

REFERENCES

EDWARDSON, J. A. (1968). The effect of agroclavine, an ergot alkaloid, on pregnancy and lactation in the rat. *Br. J. Pharmac. Chemother.*, **33**, 215P.

MANTLE, P. G. (1969). Interruption of early pregnancy in mice by oral administration of agroclavine and sclerotia of *Claviceps fusiformis* (Loveless). *J. Reprod. Fert.*, in the Press.

The antagonism of 17 β -oestradiol by stilboestrols methylated in the phenyl rings

E. R. CLARK and A. M. MACLEAN,* *Department of Pharmacology, University of Leeds*

Clark & O'Donnell (1965) found that the presence of four methyl substituents situated *ortho* to the phenolic hydroxyl groups in ψ -diethylstilboestrol produced an anti-oestrogen which was almost devoid of oestrogenic activity. Among related compounds lacking methyl groups in the nucleus, Emmens, Cox & Martin (1958, 1959) reported optimal anti-oestrogenic potency in dimethylstilboestrol and butoestrol. The effects of chain length in nuclear methylated derivatives of stilboestrol have been investigated by using 3,3',5,5'-tetramethyl- α , β -diethylstilboestrol (I), 3,3',5,5'-tetramethyl- α , β -dimethylstilboestrol (II) and 3,3',5,5'-tetramethylstilboestrol (III).

In the uterine weight test in immature mice, only compound I was oestrogenic, being 2.4×10^{-4} times as potent as 17 β -oestradiol [fiducial limits ($P=0.95$) 1.4×10^{-4} - 3.2×10^{-4}]. Subcutaneous administration of mixtures of compound I (0.02 mg) or compound II (1 mg) with 17 β -oestradiol (0.03-0.06 μ g) in arachis oil failed to suppress the response of the uterus to oestradiol, but intra-vaginal administration to ovariectomized mice of mixtures of test compound I or II (5 μ g) with 17 β -oestradiol (1.5×10^{-4} μ g to 13.5×10^{-4} μ g) in 2% aqueous Tween 80 (0.01 ml.) demonstrated a highly significant inhibition of the vaginal cornification produced by oestradiol. Compound III was inactive in this latter test.

In order to elucidate further the mechanism of this oestrogen antagonism, the effect of compounds I and II on the uptake of tritiated oestradiol was investigated. The test compound (2.5 μ g), was administered intravaginally together with 7.5×10^{-5} μ g of [6,7- 3 H]oestradiol-17 β in 0.0025 ml. 2% aqueous Tween 80. Both I and II exhibited highly significant blockade of the uptake of the tritiated oestradiol by the vagina. Preliminary experiments on homogenized vaginal tissue followed by subcellular fractionation indicate that the main site of uptake of the tritiated oestradiol is the "nuclear-myofibrillar" fraction and that uptake by this fraction is inhibited by compound I.

Aqueous Tween 80 (2%) is believed to be a suitable vehicle because intravaginal administration of 0.01 ml. of a 10% w/v solution of Tween 80 containing 17 β -oestradiol (0.4×10^{-4} and 0.8×10^{-4} μ g) did not produce a significant difference in the mitotic index or epithelium thickness from that obtained with aqueous solutions of oestradiol. Furthermore intravaginal administration of 0.01 ml. of aqueous Tween 80 alone (concentration up to 40% w/v) did not alter the normal microscopic appearance of the vaginal epithelium.

REFERENCES

CLARK, E. R. & O'DONNELL, STELLA R. (1965). Oestrogenic and anti-oestrogenic activities of some hex-2-enes related to diethylstilboestrol. *J. Endocrin.*, **33**, 535-536.

EMMENS, C. W., COX, R. I. & MARTIN, L. (1958). Oestrogen inhibitors of the stilboestrol series. *J. Endocrin.*, **18**, 372-380.

EMMENS, C. W., COX, R. I. & MARTIN, L. (1959). Oestrogen inhibition by steroids and other substances. *J. Endocrin.*, **20**, 198-209.